1. Alexander JW. History of the medical use of silver. Surg Infect (Larchmt). 2009 Jun;10(3):289-92. doi: 10.1089/sur.2008.9941. PMID: 19566416.
  2. Barras F, Aussel L, Ezraty B. Silver and Antibiotic, New Facts to an Old Story. Antibiotics (Basel). 2018 Aug 22;7(3):79. doi: 10.3390/antibiotics7030079. PMID: 30135366; PMCID: PMC6163818.


  1. Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int J Mol Sci. 2018 Feb 2;19(2):444. doi: 10.3390/ijms19020444. PMID: 29393866; PMCID: PMC5855666.
  2. Gugala N, Lemire J, Chatfield-Reed K, Yan Y, Chua G, Turner RJ. Using a Chemical Genetic Screen to Enhance Our Understanding of the Antibacterial Properties of Silver. Genes (Basel). 2018;9(7):344. Published 2018 Jul 6. doi:10.3390/genes9070344
  3. Jeremiah SS, Miyakawa K, Morita T, Yamaoka Y, Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2.Biochem Biophys Res Commun. 2020;533(1):195-200. doi:10.1016/j.bbrc.2020.09.018
  4. Dong-xi Xiang, Qian Chen, Lin Pang, Cong-long Zheng, Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro, Journal of Virological Methods, Volume 178, Issues 1–2, 2011, Pages 137-142, ISSN 0166-0934,
  5. Cristina Balagna, Sergio Perero, Elena Percivalle, Edoardo Vecchio Nepita, Monica Ferraris, Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating, Open Ceramics, Volume 1, 2020, 100006, ISSN 2666-5395,
  6. Li, Wenchu & Volodymyr, Kapalunenko & Wang, Yeyuan & Volodymyr, Dimchev. (2013). The bactericidal spectrum and virucidal effects of silver nanoparticles against the pathogens in sericulture. Open Journal of Animal Sciences. 03. 169-173. 10.4236/ojas.2013.33025.
  7. Trefry JC, Wooley DP. Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J Biomed Nanotechnol. 2013 Sep;9(9):1624-35. doi: 10.1166/jbn.2013.1659. PMID: 23980510.
  8. Tran, Dung & Vu, Nam & Nhan, Tran & Bich, Ngoc & Quang, Minh & Nga, Bui & Le, Phan & Viet Quang, Dang. (2020). Silver nanoparticles as potential antiviral agents against African swine fever virus. Materials Research Express. 6. 10.1088/2053-1591/ab6ad8.
  9. Speshock, Janice & Murdock, Richard & Braydich-Stolle, Laura & Schrand, Amanda & Hussain, Saber. (2010). Interaction of silver nanoparticles with Tacaribe virus. Journal of nanobiotechnology. 8. 19. 10.1186/1477-3155-8-19.
  10. R., Swathy & Sankar, M & Chaudhary, Amrita & Aigal, Sahaja & Anshup, & Thalappil, Pradeep. (2014). Antimicrobial silver: An unprecedented anion effect. Scientific reports. 4. 7161. 10.1038/srep07161.
  11. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine. 2013;8:4303-14. doi: 10.2147/IJN.S50070. Epub 2013 Nov 6. PMID: 24235828; PMCID: PMC3826769.
  12. Shahidi, Sheila & Wiener, Jakub. (2012). Antibacterial Agents in Textile Industry. 10.5772/46246.
  13. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology. 2011 Aug 3;9:30. doi: 10.1186/1477-3155-9-30. PMID: 21812950; PMCID: PMC3199605.
  14. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011 Oct 24;16(10):8894-918. doi: 10.3390/molecules16108894. PMID: 22024958; PMCID: PMC6264685.


  1. Tian G, Hindle M, Lee S, Longest PW. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data. Pharm Res. 2015 Oct;32(10):3170-87. doi: 10.1007/s11095-015-1695-1. Epub 2015 May 6. PMID: 25944585; PMCID: PMC4580521.
  2. Verbanck S, Ghorbaniasl G, Biddiscombe MF, Dragojlovic D, Ricks N, Lacor C, Ilsen B, de Mey J, Schuermans D, Underwood SR, Barnes PJ, Vincken W, Usmani OS. Inhaled Aerosol Distribution in Human Airways: A Scintigraphy-Guided Study in a 3D Printed Model. J Aerosol Med Pulm Drug Deliv. 2016 Dec;29(6):525-533. doi: 10.1089/jamp.2016.1291. Epub 2016 Jun 23. PMID: 27337643.
  3. Lizal F, Jedelsky J, Morgan K, Bauer K, Llop J, Cossio U, Kassinos S, Verbanck S, Ruiz-Cabello J, Santos A, Koch E, Schnabel C. Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur J Pharm Sci. 2018 Feb 15;113:95-131. doi: 10.1016/j.ejps.2017.08.021. Epub 2017 Aug 23. PMID: 28842353.
  4. Jabbal S, Poli G, Lipworth B. Does size really matter?: Relationship of particle size to lung deposition and exhaled fraction. J Allergy Clin Immunol. 2017 Jun;139(6):2013-2014.e1. doi: 10.1016/j.jaci.2016.11.036. Epub 2017 Jan 10. PMID: 28087325.
  5. Chrystyn H. Methods to identify drug deposition in the lungs following inhalation. Br J Clin Pharmacol. 2001 Apr;51(4):289-99. doi: 10.1046/j.1365-2125.2001.01304.x. PMID: 11318763; PMCID: PMC2014454.
  6. -S. Cheng, S.M. Smith, H.-C. Yeh, Deposition of ultrafine particles in human tracheobronchial airways, The Annals of Occupational Hygiene, Volume 41, Supplement 1, 1997, Pages 714-718, ISSN 0003-4878,
  7. Kuo-Hsi Cheng & David L. Swift (1995) Calculation of Total Deposition Fraction of Ultrafine Aerosols in Human Extrathoracic and Intrathoracic Regions, Aerosol Science and Technology, 22:2, 194-201, DOI: 10.1080/02786829509508887
  8. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588-599. doi:10.1046/j.1365-2125.2003.01892.x
  9. Agertoft L, Laulund LW, Harrison LI, Pedersen S. Influence of particle size on lung deposition and pharmacokinetics of beclomethasone dipropionate in children. Pediatr Pulmonol. 2003 Mar;35(3):192-9. doi: 10.1002/ppul.10238. PMID: 12567387.
  10. Bäckman P, Arora S, Couet W, Forbes B, de Kruijf W, Paudel A. Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. Eur J Pharm Sci. 2018 Feb 15;113:41-52. doi: 10.1016/j.ejps.2017.10.030. Epub 2017 Oct 25. PMID: 29079338.
  11. Mohiti-Asli M, Pourdeyhimi B, Loboa EG. Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater. 2014 May;10(5):2096-104. doi: 10.1016/j.actbio.2013.12.024. Epub 2013 Dec 21. PMID: 24365706; PMCID: PMC3976692.
  12. Evans A, Kavanagh KA. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens. J Med Microbiol. 2021 May;70(5). doi: 10.1099/jmm.0.001363. PMID: 33961541.